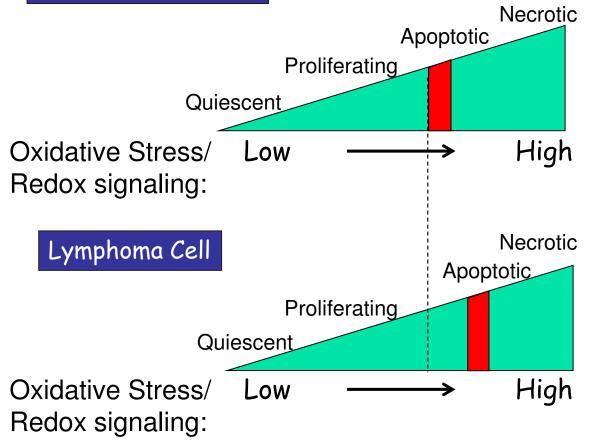
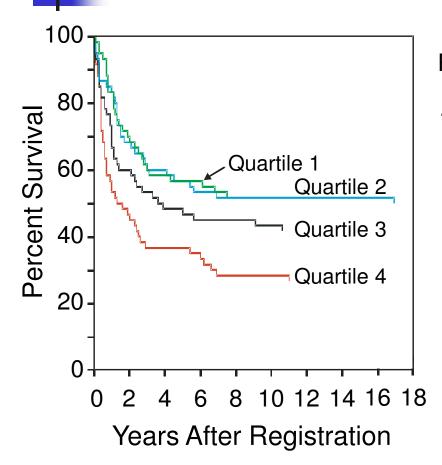

Cellular Redox Environment as a Target for Cancer Prognostics and Treatment

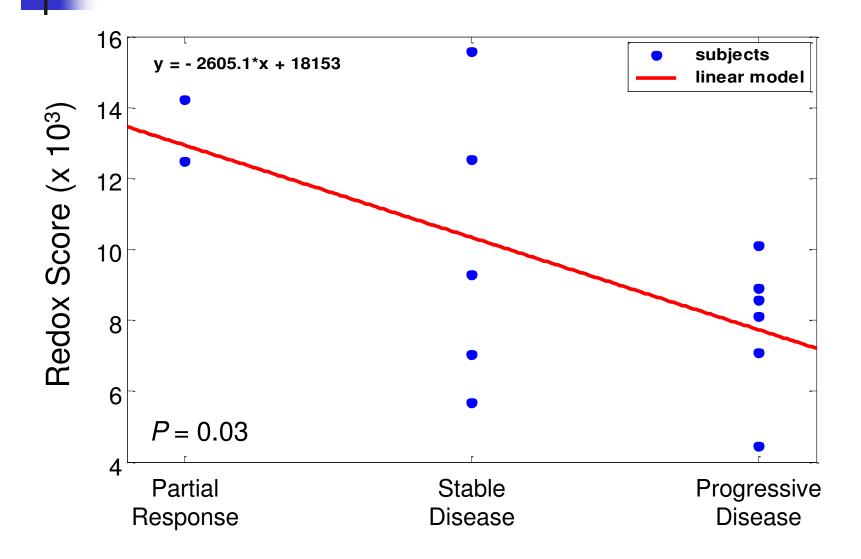
> Margaret M. Briehl, Ph.D. Professor of Pathology


Diffuse Large B Cell Lymphoma (DLBCL)

- Standard therapy cures ~50% of patients
- Remaining patients have a high probability of death within 5 years
- Clinical features are somewhat predictive of treatment outcome
- Clinical features do not inform the underlying biology


Model & Translational Studies

Normal Lymphocyte


- 1. How does the redox state contribute to treatment resistance?
- 2. What is the mechanism for altered redox signaling altered in lymphoma cells?
- 3. How do we capitalize on the redox state of lymphomas to improve cure rates?

Redox Scores and Outcome in DLBCL

-	Score				
Q1	Q4				
High	Low	Antioxidant Defenses			
Low	High	Oxidative Stress Response			
Low	High	Maintenance of Redox- Regulated Transcription Factors			
Quartiles 1 or 2 vs. 4, $P < 0.01$					

Redox Score Predicts Lymphoma Response to the Redox-Targeted Drug Imexon

NADPH Oxidase Gene SNP and Treatment Outcome in Aggressive Lymphomas

Cohort	Genotype	Events/Patients	HR (95% CI)	P value
Discovery (n=327)	GG/AG	157/274	1.00 (reference)	0.06
	AA	24/53	0.66 (0.43 – 1.02)	0.06
Validation (n=504)	GG/AG	165/423	1.00 (reference)	0.05
	AA	26/81	0.66 (0.44 - 1.01)	0.05
Meta-	GG/AG	322/697	1.00 (reference)	< 0.01
Analysis	AA	50/134	0.66 (0.49 – 0.89)	<0.01

Discovery: SWOG clinical trials, aggressive lymphomas, anthracycline based therapies

Validation: Mayo Rochester patients, DLBCL, R-CHOP

Partnership for Native American Cancer Prevention (NACP)

- Objective: Alleviate cancer health disparities among Native Americans in the southwest
- Four components
 - Research 3 projects, each with an NAU & UA PI
 - Training recruit Native American students for training activities from pre-college to post-graduate
 - Outreach cancer education and input on community priorities
 - Evaluation tracks progress toward specific aims

Alignment with Areas of Excellence

- Precision Health: mechanistic studies of redox-based approaches to guide treatment for lymphoma patients
- Health Disparities: developing a workforce of Native American health care providers and cancer researchers

Acknowledgements

	UA Collaborators	External Collaborators
Redox Signaling	Margaret Tome, Ph.D. Lisa Rimsza, M.D. Sarah Wilkinson, Ph.D. David Johnson, Ph.D. Melba Jaramillo, Ph.D. Kristy Lee, Ph.D.	Leukemia & Lymphoma Molecular Profiling Project (GEP data)
SNPs in Redox Genes & Imexon Clinical Trial	Heather Gustafson, Ph.D. Lisa Rimsza, M.D. Catherine Spier, M.D. Thomas Miller, M.D. Dan Persky, M.D. Robert Dorr, Ph.D. Terry Landowski, Ph.D. Denise Roe, Ph.D. Haiyan Cui, M.S. Soham Puvvada, M.D.	Christine Ambrosone, Ph.D. Song Yao, Ph.D. Michael LeBlanc, Ph.D. Richard Fisher, M.D. James Cerhan, M.D. Thomas Habermann, M.D. Steven Bernstein, M.D. Steven Bernstein, M.D. Paul Barr, M.D. Jonathan W. Friedberg, M.D. Derick Peterson, M.S.
NACP	David Alberts, M.D. Teshia Solomon, Ph.D.	Laura Huenneke, Ph.D. Jani Ingram, Ph.D.